Geometric Quantization and Equivariant Cohomology Geometric Quantization and Equivariant Cohomology

نویسنده

  • M. Vergne
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Equivariant brst quantization and reducible symmetries

Working from first principles, quantization of a class of symmetric Hamiltonian systems whose constraint algebras are not closed is carried out by constructing first the appropriate reduced phase space and then the brst cohomology. The brst operator constructed is equivariant with respect to a subgroup H of the symmetry group G of the system. Using algebraic techniques from equivariant de Rham ...

متن کامل

Morphisms of Cohft Algebras and Quantization of the Kirwan Map

We introduce a notion of morphism of CohFT algebras, based on the analogy with A∞ morphisms. We outline the construction of a “quantization” of the classical Kirwan morphism to a morphism of CohFT algebras from the equivariant quantum cohomology of a Gvariety to the quantum cohomology of its geometric invariant theory or symplectic quotient, and an example relating to the orbifold quantum cohom...

متن کامل

Arc Spaces and Equivariant Cohomology

We present a new geometric interpretation of equivariant cohomology in which one replaces a smooth, complex G-variety X by its associated arc space J∞X, with its induced G-action. This not only allows us to obtain geometric classes in equivariant cohomology of arbitrarily high degree, but also provides more flexibility for equivariantly deforming classes and geometrically interpreting multiplic...

متن کامل

ar X iv : h ep - t h / 05 05 24 1 v 1 2 6 M ay 2 00 5 Gauge fixing and equivariant cohomology

The supersymmetric model developed by Witten [1] to study the equivariant cohomology of a manifold with an isometric circle action is derived from the brst quantization of a simple classical model. The gauge-fixing process is carefully analysed, and demonstrates that different choices of gauge-fixing fermion can lead to different quantum theories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993